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We consider the flow of a fluid between coaxial disks. An extensive literature deals 
with this problem; a review can be found in [i], for example. Detailed study has also been 
devoted to the study of flows in channels with permeable walls (with injection or evacuation) 
[2]. In both cases an exact solution of the Navier-Stokes equations can be found in the 
one-dimensional case, if one assumes that the fluid is incompressible. 

Evidently an analogous one-dimensional solution in the case of a compressible gas can- 
not be found, in general. However if one considers a slowly flowing viscous gas, where the 
Mach number is small and therefore can be neglected, and the density variation is due to large 
temperature variations, then under certain conditions the one-dimensional nature of the solu- 
tion can be retained. Due to the importance of this problem in applications (for example 
in chemical engineering and microelectronics), we obtain in the present paper a one-dimension- 
al solution of the Navier-Stokes equations for the flow of a viscous, heat-conducting gas 
�9 in the gap between two disks. 

Let the lower disk rotate with angular velocity to, while gas is injected with velocity 
Vin through the upper disk. We introduce a cylindrical coordinate system with the z-axis 
directed along the axis of the 'disks. Since the Mach number is assumed small, we can neglect 
the contribution of the kinetic energy to the total energy of the gas and do not take into account 
viscous dissipation in the energy equation. In addition, if the pressure variation in the 
channel is small, then in the equation of state we can neglect this variation and assume that 
the density of the gas depends only on its temperature. The concrete condition for the ap- 
plicability of this assumption is discussed below. 

With the above assumptions, we can represent the solution of the problem in the follow- 
ing form (the index 0 refers to parameters at z = 0) 

vr = r h F , v ~ =  ~orG ~ , vz = - -~  H ---U ; 

o P + p o e x p  " gz 
P ----- - -  Po~'~? a r ~ +  POh--Y - -  ' ( l b )  

(+) r = r o o  , 

where h is the channel thickness; v is the kinematic viscosity; g is the acceleration of 
gravity; R is the universal gas constant; a is a parameter related to the injection velocity. 
The last term in (Ib) takes into account the effect of gravity (along the z-axis) in the 
momentum equation. 

Equation (ib) shows that the variation of the pressure in the equation of state will be 

small if 

gh ~'o ~ 
BTo << i, Po "~" ~ Po (2a) 

a n d  

r < < - - - -  
2h4 Po ( 2 b )  

'v~a Po 

Hence even for infinite disks the solution (I) is only valid in a finite region of r satisfy- 
ing (2). On the other hand, despite the small variation of pressure, the first term in (ib) 
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(determining the radial pressure gradient) will significantly affect the nature of the flow 
in the channel. 

Further, let the thermal conductivity X and dynamic viscosity ~ have the forms 

; '  = ~'o O~, ~ = ~o 0'~- ( 3 )  

Then, substituting (i) and (3) into the complete system of Navier-Stokes equations (which 
are not written out here), and using the above assumptions, the following system of ordinary 
differential equations is obtained: 

H" = 0 7 ~ O ' H  - -  2 F ,  

F "  = o - ( r n + l ) ( F  2 - -  Ec-2G 2 -F H F '  - -  aO)  - -  m O - l O ' F ' ;  

G'" = O - ( " + I ) ( 2 F G  -F H G ' )  - -  m O - l O ' G  ' ,  

O "  = PrHO-(~+~)O ' - -  nO-~O'~;  

( 4 )  

(5) 

4 @ O m F ,  4 ~ , ~ - ,  ~,  p ' = - - H H ' O - I + G a ( I - - O - I ) + - U ( O ~ H ' ) ' +  - - - - g m ~  ~ r ,  (6) 

where Ec, Pr, and Ga are the Ecman, Prandtl, and Galilei numbers, defined as 

___ gh 3 
P r =  Po%% Ec  % G a =  .-~. 

Equations (4) and (5) are coupled, while (6) determines the pressure. In the derivation of 
(6), the exponent in (Ib) was expanded in a series and only the linear term was retained; 
this is justified, in view of (2). 

For comparison, we give the analogous system of equations for an incompressible fluid, 
when the viscosity and thermal conductivity depend on temperature: 

H '  = - - 2 F ,  ( 7 )  
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F "  = O-rn(F ' - -  Ec-2G " ~- H F '  - -  a) - -  m O - q g ' F ' ;  

G" = O-ra(2FG q- H G ' )  - -  m O - * O ' G  ',  0 "  = Pr  H O - ' O  ' - -  nO- lO '~ ;  

p '  = - - H H "  Jr- C a ( i  - -  @-~) -5 2O~F ' + 2 (O~H' )  ' .  

(8) 

(9) 

The boundary conditions for the system (4) are: 

F(O) = F ( t )  = O, G(O) = t ,  G(i) ---- O, H(O) = O, 

and there is an additional condition on H(1), relating it to the given injection velocity: 
H(1) = -hvin/V 0. This condition can be satisfied by properly choosing the parameter a for a 
fixed value of the Ecman number. Given aj on the other hand, one can find the injection 
velocity from the solution of the system. 

The boundary conditions for the temperature are 

T---~ T o for z----O, 

OT 
--~-Tr = (--pvZep + ~)(r-- T~) (i0) 

for Z ~ h, 

where ~ is the coefficient of heat exchange with the surrounding medium. In the second bound- 
ary condition we specialize to the problem with injection and include the term 9VzCp, which 
takes into account the discharge of heat due to heating of the injected gas, whose initial 
temperature is T~. Passing through the upper wall of the channel, the gas is heated and it 
enters the channel with a temperature equal to the temperature of the wall. Substituting (i) 
into (i0), we obtain finally 

O],=0 = t ,  O'  - -  (P rO- (n+ l )H( l )  - -  BiO-n)(O - -  O=)]z=l = 0,~ 

Bi  = ho~/ko. 
(ii) 

The above boundary-value problem was solved by a combination of the method of calibra- 
tion and continuation of the solution in a parameter. The results of the calculation are 
shown in Fig. i. 

We note that for the system (7) through (9) the boundary condition for 0 has the form 

O '  - -  O - n ( P r H ( l )  - -  Bi)(O - -  O~)lz=1 = 0. ( 1 2 )  

C a l c u l a t i o n s  w e r e  d o n e  f o r  Ec = 0 . 1 ,  P r  = 0 . 7 ,  B i  = 1 . 0 ,  m = n = 1 / 2 ;  a = - 1 8 . 8 ,  0 ,  5 
[ F i g .  l a  t h r o u g h  l c ,  r e s p e c t i v e l y ,  w h e r e  c u r v e s  1 and  1 '  g i v e  F ,  c u r v e s  2,  2 ' ,  2"  g i v e  H, 
c u r v e  3 g i v e s  O; c u r v e s  1 and  2 w e r e  c o n s t r u c t e d  w i t h  0~ = 1;  c u r v e s  1 '  and 2 '  w i t h  0~ = 
0 . 3 ;  and  c u r v e  2"  was o b t a i n e d  f r o m  t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 7 )  and  ( 8 )  w i t h  0~ = 0 . 3 ] .  

The  c a s e  0~ = 1 c o r r e s p o n d s  t o  t h e  s o l u t i o n  f o r  an  i n c o m p r e s s i b l e  f l u i d ,  s i n c e  i n  t h i s  
c a s e  O = 1 o v e r  t h e  e n t i r e  h e i g h t  o f  t h e  c h a n n e l  and  t h e r e f o r e  t h e  t e m p e r a t u r e  d i s t r i b u t i o n  
does not affect the velocity field. From Fig. 1 it is evident that the compressibility of 
the gas, caused by the nonuniformity of the temperature, significantly affects the velocity 
field. When O= < 1 the axial velocity H(z) decreases over the entire width of the channel 
and it becomes nonmonotonic even when a > 0, whereas the radial velocity F(z) decreases near 
the lower disk and increases near the upper disk. We emphasize that the difference between 
the solution for an incompressible fluid and that taking the compressibility of the gas into 
account increases if one takes into account the temperature dependence of I and ~ in keeping 
the density p constant. 
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